ELARK NO .: 9859700016109(1)

O STATOIL

Well: 15/9–19A

SST ZA

PVT ANALYSIS OF SINGLE PHASE SAMPLE REPORT NO.: STAT550B MAY 1998

Oilphase

LABORATORY REPORT

Page 2

TITLE: 15/9-19A, PVT ANALYSIS OF SINGLE PHASE SAMPLE

Client Name and Address	Date Sampled	28.10.1997
STATOIL	Date of arrival	19.11.97
P. box 300	Date Analysed	NovDec. 1997
4001 STAVANGER	Date Reported	28.05.1998
Attn.: Tore Tjomsland	Oilphase Reference	STAT550B

Client Contact Person	Tore Tjomsland
Contract / Order Reference	Contract no. VMS 14435/
Number of Samples	1
Sample Type	Single Phase Sample
Sample Identification	20770
Sampling Location	-
Sampling Procedure	-
Condition of Sample on arrival	OK

Analysis Results

We refer to attached report for analysis results.

Analysed by subcontractors	Method	Subcontractor

Comments

The analyses are not accredited analyses.

We hereby confirm that the results obtained refer to the samples provided. This report shall not be copied in part without prior approval from Oilphase. If you have any questions regarding this report, please do not hesitate to contact us. If not otherwise stated all analyses on this report are accredited.

Stavanger, 28th May 1998

Egil Linjord Chief Analyst

Evib Get

Erik Løe Lab. engineer

Page

LIST OF CONTENT

1.	INTRODUCTION
2.	SCOPE OF WORK 4
3.	SUMMARY
4.	SAMPLE
5.	COMMENTS7
6.	SINGLE STAGE FLASH OF RESERVOIR FLUID
7.	CONSTANT MASS EXPANSION OF RESERVOIR FLUID 13-14
8.	FIGURES 15-17
9.	LABORATORY PROCEDURES 18-21
10.	SAMPLING SHEET

1. INTRODUCTION

This report contains the results from the PVT analyses on the fluid from Well 15/9-19A. The analyses have been performed in agreement with the scope of work given by Statoil with reference to the contract no.: VMS 14435/

Company contact person:Tore TjomslandOilphase contact person:Erik Løe

Stavanger, 28.05.98

2. SCOPE OF WORK

The following analyses have been performed on the fluid from well 15/9-19A:

- Constant mass expansion of reservoir fluid at reservoir temperature.
- Single stage flash including the compositional analysis to C_{10} +.

The analyses were performed on the reservoir fluid at conditions given by Statoil.

3. SUMMARY

Reservoir Fluid Study Well: 15/9-19A Reservoir fluid sample Bottle no. : 20770 May, 1998

This report presents the results of a PVT-study of a reservoir fluid from well 15/9-19A.

Single-stage flash and constant mass expansion were determined on the fluid at 110°C (reservoir temp.).

Main results:			
Bubble point pressure	•	235.5	bar
Compressibility at bubble point pressure	:	1.72 · 10-4	bar ⁻¹
From single-stage flash:			
Gas/oil ratio	:	111.8	Sm³/Sm³
B_o at bubble point pressure	:	1.388	m³/Sm³
Density of oil at standard conditions	:	900.5	kg/Sm³
Density of oil at bubble point pressure	:	733.4	kg/m³

STANDARD CONDITIONS:	for gas volume	:	15°C and 1.01325 bar absolute
	for oil volume	:	15°C and atmospheric pressure

All the pressures are expressed in bar absolute = bar

.

4. SAMPLE

The reservoir fluid sample from 15/9-19A Test 2A for the PVT analysis was supplied by Statoil.

The sample was a single phase sample and no quality check was performed.

Field Formation Well Test Interval tested, perforations Reservoir fluid	: Sleipner : Hugin : 15/9-19A : 2A : 3885.5 - 3888.5 m MD RKB, 3074.9 - 3077.5 m TVD MSL : Oil
Static bottom hole conditions	
Reservoir pressure Reservoir temperature	(322) bar 336.5 bar (indiad) :111 °C
Date of sampling Time of sampling	: 28.10.97 : 22:22 - 22:44
Type of sample Oil bottle Gas bottle	: Single Phase oil sample : 20770 : -
Separator conditions	
Separator pressure Separator temperature	:- bar :- °C
Dynamic bottom hole conditions	
Flowing pressure Flowing temperature	:- bar :- °C
Flow rates	
Separator gas rate Separator oil rate Gas-oil ratio Gas gravity z-factor	:- Sm ³ /D :- m ³ /D :- Sm ³ /m ³ :-
From separator gas composition	
Gas gravity	:-
z-factor Corrected gas-oil ratio	: - : - Sm ³ /m ³

5. COMMENTS

Sample:

The sample for the PVT analysis was transferred from a Single Phase sampler to a single phase storage bottle by Maritime Well Services AS.

Single Phase Sampler:Xact Single Phase, SPS 073Storage bottle no.:20770

After the transfer of the sample to the PVT cell the sample was kept in single phase conditions for further analysis.

Page

6. SINGLE STAGE FLASH OF RESERVOIR FLUID

		-
6.1.	Main results from the single stage flash of reservoir fluid	9
6.2.	Composition analysis of stock tank gas	10
6.3.	Composition analysis of stock tank oil	11
6.4.	Mathematical recombined reservoir fluid composition	12

6.1 FLASH OF RESERVOIR FLUID TO STOCK TANK CONDITIONS.

Flash conditions: 351.5 bar and 110.°C to atmosphere and 28°C.

Bottle no.: 20770

Gas oil ratio	: 111.8	Sm³/Sm³	1)
B_o at 351.5 bar	: 1.362	m³/Sm³	2)
B_o at bubble point pressure	: 1.388	m³/Sm³	3)
Density of oil at 15°C	: 900.5	kg/Sm³	
Density of fluid at bubble point pressure $P_{res} = \frac{336}{5}$ be	: 733.4 745 /1	kg/m³	
Molecular weight of dead oil (measured)	: 257		
Gas gravity (air=1)	: 0.856		
Molecular weight of C7+ (calculated)	: 283		4)
Density of C ₇₊ (calculated)	: 914	kg/Sm³	4)
Molecular weight of C ₁₀₊ (calculated)	: 335		4)
Density of C ₁₀₊ (calculated)	: 932	kg/Sm³	4)

1)

Standard m³ gas per Sm³ stock tank oil. m³ of separator liquid at 351.5 bar per Sm³ stock tank oil 2)

m³ of separator liquid at bubble point per Sm³ stock tank oil. 3)

4) Stock tank oil.

6.2 FLASH OF RESERVOIR FLUID TO STOCK TANK CONDITIONS

MOLECULAR COMPOSITION AND PNA DISTRIBUTION

Sample from bottle no.: 20770, Chamber Xact SPS 073

Stock tank gas

Component	Wt%	mol%	molwt.	LNG 1)
Nitrogen	0.93	0.82		
Carbon dioxide	4.99	2.81		
Methane	45.14	69.79		
Ethane	12.17	10.04		
Propane	15.24	8.57		314.9
iso-Butane	2.43	1.04		45.3
n-Butane	8.07	3.45		145.0
iso-Pentane	2.59	0.89		43.5
n-Pentane	3.42	1.18		56.9
Hexanes	2.54	0.75	83.8	40.2
Р	2.22	0.64		
Ν	0.32	0.11		
Α	0.00	0.00		
Heptanes	1.91	0.53	89.1	29.1
P	0.60	0.15		
Ν	0.99	0.28		
А	0.32	0.10		
Octanes	0.44	0.10	105.7	6.5
Nonanes	0.03	0.01	119.2	0.4
Decanes plus	0.10	0.02	156	1.5
Sum	100.00	100.00		683.3
Average molecular	r weight :		24.81	

1) Liquified natural gas as m^3 liquid/ 10^6 Sm³ gas

6.3 FLASH OF RESERVOIR FLUID TO STOCK TANK CONDITIONS

MOLECULAR COMPOSITION AND PNA DISTRIBUTION

Sample from bottle no.: 20770, Chamber Xact SPS 073.

Stock tank oil

Component	Wt%	mol%	molwt.	density kg/m³
Nitrogen				
Carbon dioxide	-	-		
Methane	-	-		
Ethane	0.03	0.23		
Propane	0.22	1.28		
iso-Butane	0.10	0.43		
n-Butane	0.46	2.04		
iso-Pentane	0.37	1.30		
n-Pentane	0.65	2.33		
Hexanes	1.42	4.32	84.5	669
Р	1.29	3.86		
Ν	0.13	0.46		
Α	0.00	0.00		
Heptanes	2.62	7.38	91.4	739
Р	1.24	3.23		
Ν	1.01	2.93		
Α	0.37	1.22		
Octanes	2.97	7.23	105.7	759
Р	1.24	2.76		
Ν	1.19	2.96		
A	0.54	1.51		
Nonanes	2.50	5.39	119.2	772
Р	1.24	2.48		
Ν	0.62	1.37		
Α	0.64	1.54		
Decanes plus	88.66	68.07	335	932
Sum	100.00	100.00		
Average molecula	r weight :		257	

Average molecular weight :

STATOIL WELL NO.: 15/9-19A **REPORT NO.: STAT550B**

6.4 MATHEMATICALLY RECOMBINED RESERVOIR FLUID

MOLECULAR COMPOSITION AND PNA DISTRIBUTION

Sample from bottle no.: 20770, Chamber Xact SPS 073

Component	Wt%	mol%	molwt.	
Nitrogen	0.11	0.47		
Carbon dioxide	0.58	1.62		
Methane	5.20	40.12		
Ethane	1.43	5.87		
Propane	1.95	5.47		
iso-Butane	0.37	0.78		
n-Butane	1.34	2.85		
iso-Pentane	0.62	1.07		
n-Pentane	0.97	1.67		
Hexanes	1.54	2.27	84.3	
Р	1.39	2.01		
Ν	0.15	0.26		
Α	0.00	0.00		
Heptanes	2.54	3.44	90.9	
P	1.18	1.45		
Ν	1.00	1.41		
Α	0.36	0.58		
Octanes	2.67	3.13	105.7	
Р	1.10	1.20		
Ν	1.08	1.27		
Α	0.49	0.66		
Nonanes	2.21	2.30	119.2	
Р	1.10	1.06		
Ν	0.55	0.58		
Α	0.56	0.66		
Decanes plus	78.47	28.94	335	
Sum	100.00	100.00		
Average molecular	r weight :		124	

STATOIL WELL NO.: 15/9-19A REPORT NO.: STAT550B

7. CONSTANT MASS EXPANSION OF RESERVOIR FLUID

		Page

7.1.	Constant mass expansion at reservoir temperature	14

7.1 CONSTANT MASS EXPANSION OF RESERVOIR FLUID

AT 110 °C

SAMPLE: Bottle no. 20770 (from Xact SPS 073), depth 3748 m MD RKB

Pressure bar	Relative volume V/V _{BP}	Isothermal compressibility bar ⁻¹	"Y"
 A51 C	0.0692	1.26.10-4	
451.0	0.9085	1.20.10	
351.0 336.5	0.9817	1.48.10	
325.8	0.9854	1.53.10	
300.8	0.9893	$1.58 \cdot 10^{-4}$	
273.6	0.9936	$1.64 \cdot 10^{-4}$	
250.8	0.9974	1.69·10 ⁻⁴	
235.5 (P _{BP})	1.0000	$1.72 \cdot 10^{-4}$	
224.8	1.0110		4.337
203.9	1.0374		4.139
175.2	1.0903		3.813
150.0	1.1598		3.566
125.4	1.2650		3.313
102.3	1 4200		3 100
82.3	1 6395		2 011
69.9	1.0595		2.711
00.0	1.0099		2.783
59.2	2.0984		2.711
52.1	2.3300		2.647

Best fit V equation above bubble point :

 $V_{rel} = 1.0468 - 2.258 \cdot 10^{-4}P + 1.150 \cdot 10^{-7}P^2$

Best fit Y equation :

 $Y = 2.110 + 0.983 \cdot 10^{-2} P$

Constant mass expansion, see fig 1 and 2.

8. FIGURES

	Page
FIG. 1: CONSTANT MASS EXPANSION OF RESERVO FLUID	IR 16
FIG. 2: Y-FUNCTION	17

Page 8-15 of 23

Oilphase

۰.

Fig. 2

PRESSURE - VOLUME RELATION OF RESERVOIR FLUID AT 110 °C AND CONSTANT MASS

Y – function

WELL NO.: 15/9-19A REPORT NO.: STAT550B

Oilphase

9. LABORATORY PROCEDURES

<u>PVT-analysis</u>

Constant mass expansion of reservoir fluid was performed in a Ruska PVT cell. Single stage flash of reservoir fluid to 20°C and atmospheric pressure was performed in a glass Flash Separator. Gas volumes were measured by a RUSKA Gasometer. Gas samples for analysis were collected in a gas sampling tube (150-250 ml) connected between the separator and the gasometer.

Accuracy:

Temperature measurements	:	+/- 0.5	°C
Pressure measurements	:	+/- 1	bar
Repeatability:			
Gas oil ratio	:	+/- 1	%
B _o factor	:	+/- 1.5	%
Gas volumes	:	+/- 1	%
Oil volumes	:	+/- 1	%

Gas analysis

Gas analysis up to and including nonanes was carried out by a HP 6890 Gaschromatograph. First the light gases including ethane were separated from the heavier hydrocarbons on a 35% DC-200 column (4'x1/8", 80-100 mesh). The light gases, O_2 , N_2 and methane were separated on a molecular sieve column (10'x1/8", 13x45-60). CO₂ and ethane were separated on a Porapak column (6'x1/8", 80-100). Carrier gas is helium.

The analysis was carried out isothermally at 36°C. The detection was done by a TCD at 250°C.

The heavier hydrocarbons were backflushed from the DC-200 column and separated on a liquid phase DB-1 fused silica capillary column (50m x 0.322 mm, 1.0 micro filmthickness, starting at a temperature of 36°C. Final column temperature was 170°C. The detection is done by a FID at 300°C. Carrier gas is helium.

The guidelines for the performance of the gas analysis is ASTM D 1945.

The system is calibrated with a calibration gas containing hydrocarbons from methane through hexane, nitrogen and carbondioxide.

Fraction C6 and C7 is analysed in details with the calculations of PNA distribution.

Oil analysis to C10+

The oil hydrocarbons up to and including nonanes were separated in a fused silica capillary column, Hewlett Packard PONA column 50m, 0.50 micron filmthickness. Stationary phase: crosslinked methyl silicon. The gaschromatograph is HP 6880 GC. Temperature is programmed from 35°C to 130°C. The detection is done by a FID at 300°C. Carrier gas is helium.

For the calibration a PNA standard is used.

Iso-octane is used as an internal standard for the quantification. The molecular weights and the densities on the fractions from C6 to C10+ are calculated from the detailed composition.

Density

Density of stock tank oil is determined at 15°C with an AP Paar Density meter, calibrated with dry air and distilled water before each measurement.

Accuracy for the analysis: +/- 0.5 kg/m³.

The density of the saturated oil was calculated on basis of 1 m³ stock tank oil with addition of the evolved gas.

The formula is:

 ρ sat. oil = p sat. oil = Volume, sat. oil $Wt, oil + Wt, gas = (\rho st.t. + GOR \gamma gas \rho air)/B_o$

Molecular weight

Molecular weight was determined by freezing point depression of benzene with a Roebling Automatic Kryometer.

Accuracy for the analysis: +/- 1%.

NOMENCLATURE AND DEFINITIONS

General

Description		Symbol	Unit			
Temperature		t		°C		
Abs. temperatur	re	Т		°K		
Volume		V		m ³		
Pressure		Р		bar = absolute pressure		
Density		ρ		kg/m ³		
Gas gravity		γ		-		
Isothermal com	pressibil	lity		bar ⁻¹		
Viscosity	•	μ		mPa s		
Thermal expans	sion	_		°C ⁻¹		
Heating value		Н		kJ/Sm³		
Compressibility	factor	Z		-		
Molar mass		Μ		-		
Number of mol	e	n		-		
Universal gas c	onstant	R		cm³·bar/g mol·K		
P _{BP}	:	Bubblepoint pressure (barg	or bara)			
B ₀	:	Oil formation volume factor Volume of reservoir oil at 1 (STO) (m ³ /Sm ³)	or P and t/Volu	me of stock tank oil		
Vrel	:	Relative volume				
GOR	:	Gas oil ratio. Standard volume of gas/vo	lume of STC) (Sm³/m³), (Sm³/Sm³)		
LNG	•	Liquefied natural gas. Calculated liquid volume of the gas component as liquid (m ³ liquid/10 ⁶ Sm ³ gas)				
PNA	:	Paraffines, Napthenes, Arc	matics			
Rs	:	Solution gas oil ratio. Gas in solution at P and t (Sm ³ /STO (m ³))				
Bg	:	Gas formation volume fact Volume of gas at P and t/V conditions (m ³ /Sm ³)	or. Olume of the	e same gas at standard		
Bt	:	Total volume factor. Volume of oil and liberate relations)/volume of stock	d gas at P an tank oil (m³/	d t (from PV- /Sm³)		

Formulas:

Sampling:

 $Fpv = 1/\sqrt{z}$ $Fg = 1/\sqrt{\gamma}$

Single flash separation:

Gas Oil Ratio:	GOR	=	Vg,sc/Vo,sc
Oil formation volume factor:	Bo	=	Vo/Vo,sc
Density of saturated oil:	ρ,oil	=	(p,sto + γ·ρ,air·GOR)/Bo

Pressure Volume relations:

Relative volume:	Vrel		Vo/Vpb
Isothermal compressibility:	с	=	- (1/Vs)/(dVs/dP)
Y-function:	Y Y	= =	a + bP ((Pb - P)/P)/(Vs/Vpb - 1)
Thermal expansion:	β	=	(1/Vs)/(dV/dT)

Differential liberation:

Oil formation volume factor:	Bo,i	-	Vo,i/Vo,residual,sc
Gas formation volume factor:	Bg,i	=	Vg,i/Vg,i,sc
Solution Gas Oil Ratio:	Rs,i	=	∆Vg,i,sc/Vo,sc
Total formation volume factor:	Bt,i	=	n Bo,i + Bg,i(Rs - ΣΔRs,i)

Multistage separator test:

The same as single stage flash.

i=1

10. SAMPLING SHEET

The following page is the sampling sheet supplied together with the sample analysed in the PVT study. The sampling sheets for the samples not used for the PVT analyses are not included in the report.

Fabrikkveien 21, P.O.Box 281, N-4033 Forus, Norway Phone (+47) 51 81 90 00, Telefax: (+47) 51 81 90 10

BOTTOM HOLE SAMPLE

Customer Rig/Platform Well Test BHS Run	•	Statoil Byford Dolphin 15/9-19A 2A 1	Field Formation Perforations Sample Depth		Sleipner Hugin 3885,5-3888,5m MD R (E 3769.2m MD RKB
---	---	--	--	--	---

Bottle No : 20770

- 23 -

Sample No : 64

Identification	Transfer Conditions
Sample Nature : Oil	Opening Pressure : 375 bar
Date of Sampling : 28.10.97	Opening Temperature : 6 °C
Start time : 22:22	Transfer Medium : Water/Gylcol
Sampling duration : 22 mins	Transfer Duration : 19 mins
Sampler No : 073	Transfer Pressure : 430 bar
Sampler type : Xact Single Phase	Transfer Temperature : 65 °C
Volume : 700cc	Field Bubble Point : n/a at
· · · · · · · · · · · · · · · · · · ·	Lange and a second s
Final Shipping Conditions	Separator Conditions

Final Shippi	ng	Conditions	
Sample Bottle Type	:	Xmerc II	
Bottle Volume	:	774 cc	
Volume of Sample	:	550 cc	
Nitrogen Volume	:	150 cc	
Water/Glycol in Bottle	:	74 cc	
Shipping Pressure	:	450 bar	
Shipping Temperature	:	23 °C	

Oil Rate : Gas Rate : Water Rate : G.O.R. : FPV : Z-Factor : Gas Density (air = 1) :

at

Pressure :

Coupled with Samples
Xmerc 20561 from Xact BHS 076
Xmerc 20830 from Xact BHS 070

Bottom Hole Conditions		
Pressure	;	322 bar
Temperature	:	111°C
At Depth	:	3748m MD RKB

Remarks :

Sampling at static conditions

Sampled by : Keith Manning