merl fyb yry

FLUID CHARACTERIZATION

TBP-DISTILLATION, WAX, HYDROCARBON ANALYSIS OF CRUDE OIL FROM WELL 15/9-19A DST 2B VOLVE

Prepared by

NORSK LAB

Date

Title

June, 1998

Title

TBP-DISTILLATION, WAX, HYDROCARBON ANALYSIS OF CRUDE OIL FROM WELL 15/9-19A DST 2B (VOLVE)

Requested by	Project	
Oddm	ST-FLUID 98-82	
Date 30.06.98	No. of pages 65	No. of enclosures 4
Contract no.	No. of copies	Report no.
DTJ 020215	15	WL 98-62

Key Words

TBP-distillation, wax, viscosity, asphaltenes, hydrocarbon group types, high temperature gas chromatography.

Abstract

All analyses were performed on separator oil received in a pressurized 201 Xample bottle.

Key analytical data of crude oil from:	15/9-19A DST 2B
Molecular weight:	256 g/mole
Density at 15 °C:	891 kg/m ³
Weight % C_{10+} :	86,75 wt%
Wax content wt %:	17,4 / 4,9 (total / purified):
Pentane insolubles:	4,86 wt% (precipitated 1x)
Sulphur content:	2,03 wt%
Pour point, min.:	-30 °C
Wax precip. temp.:	32,7 °C

for and Rjevelan
Egil Vanvik / Anton Henneman Manager, Norsk Lab / Tech.Resp., West Lab ASA
ønningsen / Brit Bjørndal

CONTENTS

Page

INTRODUC	ΓΙΟΝ	2
RESULTS		5
REFERENCI	ES	7
TABLES		
Table 1	Data of sample used in this investigation	3
Table 2	Summary of key analytical data	4
Table 3	Data from TBP-distillation	8
Table 4	Measured and calculated molecular weights and densities	9
Table 5	Weight distribution and overlap between distillation fractions	10
Table 6	Composition of stabilized crude oil (gas chromatography)	11
Table 7	Simulated distillation by high temperature gas chromatography	
	of C_{20+} fraction	12
Table 8	Hydrocarbon group type distribution of distillation fractions	13
Table 9	PNA-distribution of distillation fractions C ₁₀ -C ₁₀ from GC-MS	14
Table 10	Thompson Indices	15
Table 11	Characteristic ratio of saturated and aromatic compounds	16
Table 12	Dynamic and annarent viscosity of thermally beneficiated oil	10
Table 13	Kinematic viscosity and density at various temperatures	19
Table 14	Emulsion stability test	10
		19
FIGURES		
Figure 1	TBP-and density-profiles	21
Figure 2	Boiling point distribution to Cross (high temperature	21
riguie 2	as chromatography)	22
Figure 2	Viscosity vs. temperature	22
Figure J	Cos abromatogram of arudo oil	25
Figure 5	Cas chromatogram of C saturated fraction	24
Figure 5	Cas chromatogram of C_{10+} saturated fraction (in detail)	25
Figure 0	Gas chromatogram of C_{10+} aromatic fraction (in detail)	20
Figure /	Gas chromatogram of C_{10+} aromatic fraction	27
Figure 8	High temperature gas chromatogram of C_{20+}	28
Figure 9	water break-out curve	29
ADDENIDICE	c	
APPENDICE	Detailed a sure a sitism of stal iline down do ail	21
Appendix A	Detailed composition of stabilized crude oil	31
Appendix B	Comp.of synt.form.water used in emulsion stability test	33
Appendix C	Description of analytical procedures	34
Appendix D	Definition of CP and MP indices	38
ENCLOSUDI	28	
ENCLUSURI	Lo Laboratorre remort from Correl ab	
	Laboratory report from CoreLab	
Enclosure 2	Laboratory report from PKS	
Enclosure 3	Laboratory report from Sinter	
Enclosure 4	Laboratory report from F&U	

INTRODUCTION

The results from a True Boiling Point (TBP) distillation and chemical and physical characterization of crude oil from well 15/9-19A DST 2B are presented in this report.

All analyses were performed on crude oil from test separator received in a pressurized 201 bottle. The bottle was preheated to 60 °C (separator temperature) to dissolve any precipitated wax before single flash to ambient conditions.

TBP-distillation including detailed composition of C_5 - C_9 fraction was performed by Core Laboratories, Aberdeen. The distillation was performed by a combination of atmospheric and vacuum distillation up to C_{20+} . Molecular weights and densities of fractions from C_{10} to C_{19} were determined by physical methods, whereas those below C_{10} were calculated from properties of the individual components and composition from gas chromatography.

The GC-MS analyses to determine group type distribution in carbon number fraction C_{10} - C_{19} were performed by SINTEF Kjemi, Oslo.

The simulated distillation by high temperature gas chromatography was performed by PKS, Statoil-Mongstad.

The following analyses were performed by West Lab ASA:

- Minimum and maximum pour point
- Wax precipitation temperature / Wax dissolution temperature
- Total wax content
- Saturate aromatic polar distribution in C_{10+} and C_{20+} residues
- Content of pentane insoluble asphaltenes
- Water content
- Sulphur content
- Acid number and nitrogen bases
- Emulsion stability test

Analyses performed by Statoil, F&U:

- Kinematic viscosity from 80 °C to 40 °C
- Apparent viscosity at various shear rates from 40 °C to 0 °C

Some data of the sample used, are summarized in Table 1 below and a summary of essential analytical data is given in Table 2. A gas chromatogram of the oil is shown in Figure 4.

Well	15/9-19A VOLVE
Test no.	DST 2B, Main flow
Field	Sleipner, Volve
Formation	Hugin
Perforation / Sample depth	3079,9 3077,5
m TVD MSL	3021,2 - 3056,3
Fluid type	Crude oil
Sampling point	MTU oil outlet
Bottle no.	50257 Xample
Date of sampling	31/10/97
Time of sampling	04:57 – 05:07
Separator pressure	13,0 bara
Separator temperature	59,2 deg C

Table 1.Data of sample used in this investigation

		Crude oil	C ₁₀₊ fraction	C ₂₀₊ fraction
Weight % of crude	oil	100	86,75	60,03
Molecular weight (g/mole)	256 (a)	346	570
Density (g/cc)		0,891	0,927	0,973
Water content (wt%	ó)	0,05		
Sulphur content (w	t%)	2,03		
Wax content	Not purified	17,4		
(wt%)	Purified	4,9		
Pentane insolubles	Precipitated 1 X	4,86		
(wt%)	Precipitated 2 X	3,77		
Saturates (wt%)			34,9	27,6
Aromatics (wt%)			52,9	57,0
Polars (wt%)			7,8	9,1
Total acid number ((mg KOH/g)	0,07		
Nitrogen bases (wt	%)	0,08		
Pristane/Phytane (t)		0,686	
Pristane $/n-C_{17}$ (b)			0,805	
Phytane /n-C ₁₈ (b)			1,32	
$n-C_{17}/n-C_{27}$ (b)			3,95	
Pour point (°C)	Minimum_(c)	- 30		
	Temp.cycled (d)	- 10		
	"As received" (e)	- 4		
Wax precipitation t	emperature (°C)	32,7		
Wax dissolution ter	nperature (°C)	43		
Kinematic	80 °C	7,9		
viscosity (cSt)	70 °C	9,1		
	60 °C	13,2		
	50 °C	17,1		
	40 °C	23,6		

Summary of key analytical data of crudeoil 15/9-19A DST 2B Table 2.

(a) Average of calculated molecular weights using C_{10+} and C_{20+} (b) Area percent ratio from paraffin-naphthene chromatogram (c) After preheating to 80 °C (thermal benefication)

(d) Reheated from minimum pour point to 50 $^{\circ}C$ and then recooled

(e) Without thermal benefication

RESULTS

Table 2 gives a summary of key analytical data. The crude oil from well 15/9-19A DST 2B is a relatively heavy oil, with a high content of asphalthenes (4,9 wt%) and sulphur (2,03 wt %). The aromatic fraction is also quite high (52,9 wt%). The acid number is quite low. The acid number is relatively low. Most crude oils from the North Sea have acid number in the range 0,05 - 0,2 mg KOH/g. The acid number indicates the content of organic acids in the oil, primarily of high molecular weight since low MW acids are likely to enter the water phase in the reservoir. The crude oil has very low pour point which correspond with the low wax appearance point (WAT).

Table 3 gives the boiling point distribution of the oil on weight, volume and mole basis as well as densities and molecular weights of each distillation fraction. The volumetric boiling point distribution to C_{20+} is illustrated in **Figure 1**.

Table 4 compares molecular weights and densities of crude oil and residues obtained by direct measurements with values obtained by summation of individual fractions. The observed discrepancy between measured and calculated molecular weights is within normal experimental uncertanity. The average of the **calculated** molecular weights is believed to be the most reliable.

Table 5 gives the overlap between successive distillation fractions as determined by capillary gas chromatography.

Table 6 gives the detailed composition of the light end of the crude oil, including n-C₉. The weight percent of individual compounds and pseudocomponents from gas chromatography were normalised to fit the experimental C_{10+} weight percent from distillation.

Table 7 gives the complete boiling point distribution of the crude oil obtained by combining the GC-analysis of the light end with the distillation to C_{20+} and simulated distillation of the C_{20+} residue to C_{100+} high temperature gas chromatography (HTGC) with internal standard. The atmospheric equivalent boiling point corresponding to n- C_{100} is 725 °C. The boiling point distribution on weight basis is illustrated in **Figure 2**. The high temperature gas chromatogram is shown in **Figure 8**.

Table 8 gives the distribution of saturates (paraffins + naphthenes) and aromatics in all distillation fractions calculated according to a correlation between aromatic content and density of the fractions (**ref. 3**). Check against experimental values of the C_{14} and C_{19} fraction show discrepancy out of normal error (2 wt%) for the correlation. All fractions from C_{14} to C_{19} where therefore checked experimentally. For the C_{10+} and C_{20+} residues the amount of polars were estimated using an "in-house" correlation between weight fractions of polars and aromatics in C_{10+} (**ref. 4**).

Table 9 gives the detailed hydrocarbon group type distributions of fractions C_{10} to C_{19} as determined by gas chromatography - mass spectrometry.

Table 10 gives some component ratios between compounds $< n-C_9$, known as Thompson's Indices (**ref. 2**) which give aromatic hydrocarbons relative to normal alkanes of similar molecular weight, and unbranched alkanes and naphthenes relative to branched isomers and paraffins relative to naphthenes. The component ratios provide information about maturity, migration and fractionation of the petroleum fluid in the reservoir, and are useful for comparison of crude oils.

Table 11 gives some characteristic ratios between individual compounds $> n-C_{10}$, primarily of geochemical interest, based upon area percents from FID gas chromatograms of the saturate and aromatic subfractions (**Figures 5, 6 and 7**).

Table 12 gives the viscosity data of the crude oil in the temperature range 0-80 °C. For temperatures of 40 °C and higher, the dynamic viscosities were calculated from kinematic viscosities using densities in Table 13.

Below 35 °C the apparent (shear dependent) viscosity of thermally beneficated oil is reported at four different shear rates. These viscosities were obtained by cooling the oil at a rate of 12.5 °C/hour and the specified rate in the viscosimeter.

The viscosities at shear rate 30 s-1 are relatively high compared to the data at the shear rates 100, 300 and 500 s-1. The reason is not known, but could be related to problems with shear rate control at low shear rates. The viscosities at 30 s-1 are thus not considered reliable.

The oil is seen to be more or less Newtonian at temperatures down to about 15 °C. The viscosity-temperature relationship is shown as a graph in Figure 3.

Table 13 summarizes the kinematic viscosities in the Newtonian temperature range as measured with a Ubbelohde glass capillary viscometer tube and the densities used to convert the kinematic viscosities to the dynamic viscosities in Table 12.

Table 14. The result of bottle tests at 50°C with synthetic water-in-oil emulsion, 20% and 50% water cut, are summarized in Table 14.1 (untreated) and 14.2 (treated with 10 ppm demulsifier, SOC-6011X.). Emulsions were prepared with <u>fresh</u> separator oil immediately after flash to atmospheric conditions. Oxidation due to air was then minimized. The test indicated that the untreated 15/9-19A DST 2B crude oil forms stable emulsions at 50°C. With 10 ppm, 60% and 100% free water break-out was achieved within 15 minutes for the 20% and 50% emulsion respectively. The water separation curves are presented in **Figure 9**. The synthetic formation water used in the emulsion tests is based on composition of real formation water. The composition of the formation water is given in Appendix B.

References

- 1. Manual of Petroleum Measurement Standards, 1st.ed.; API Standard 2540; American Petroleum Inst.: Washington; DC, 1980; Vol VII, Table 53A.
- 2. K.F.M.Thompson, "Fractionated aromatic petroleums and the generation of gascondensates", Org.Geochem. Vol.11, no.6, pp.573-590, 1987.
- Rønningsen, H.P., Skjevrak, I., Osjord, E.H. "Characterization. of North Sea Petroleum Fractions: Hydrocarbon group types, density and molecular weight", Energy & Fuels, 1989, 5(6), 744-755.
- 4. Rønningsen, H.P., "Characterization of North Sea crude oil by chemical, physical and rheological methods", Dr. Philos theses, University of Oslo (1991).
- 5. Katz, D.L., Firoozabadi, "Predicting Phase behavior of condensate / crude oil systems using methane interaction coefficient", J.Petrol. Technol. 30, 1649-1655 (1978).
- 6. ASTM D 2892; "Standard Test Method for Distillation of Crude Petroleum " Annu.Book of ASTM Stand., vol. 05.02 (1986).
- Osjord, E.H., Rønningsen, H.P., Tau, L.Aa., "Distribution of weight, density and molecular weight in crude oil from computerized capillary GC", J. High Resolut.Chromatogr., Chomatogr. Commun. 8, 683-690 (1985).
- 8. Burger, E.D., Perkins, T.K., Striegler, J.H., "Studies of wax deposition in the Trans Alaska pipeline", J. Petrol. Technol., June 1075-1086 (1981).
- Rønningsen, H.P., Bjørndal, B., Hansen, A.B., Pedersen, W.B., "Wax precipitation from North Sea crude oils. 1. Crystallization and Dissolution Temperatures, and Newtonian and non-Newtonian flow properties", Energy and Fuels, vol.5, no. 6, 895-908 (1991).
- 10. ASTM D 97; "Standard Test Method for Pour Point of Petroleum Oils". Annu. Book of ASTM Stand. vol. 05.01 (1989).
- 11. Rønningsen, H.P., Skjevrak, I., "Characterization of North Sea Petroleum fractions: Aromatic ring class distribution", Energy & Fuels, vol.4, no.5, 608-626 (1990).
- 12. U&P method 269-70T, "Nitrogen bases in hydrocarbons by potentiometric titration", Universal oil Products Comp., Des Plaines, USA, (1970).
- 13. ASTM D664-87, "Acid number of petroleum products by Potentiometric titration", Annual Book of ASTM Stand., vol.05.01. (1989).

8	

Table 3.Data from TBP distillation of stabilized crude oil 15/9-19 DST 2B

· ·

Cut	Temp deg C	Wt%	Cum Wt%	Density	Vol%	Cum Vol%	Mol Wt	Mole %	Cum Mol %
C4-		0.76	0.76	0.56	1.21	1.21	53.9	3.58	3.58
C5		1.14	1.90	0.628	1.62	2.83	72.15	4.03	7.61
C6	69.2	1.43	3.33	0.669	1.91	4.74	84.69	4.30	11.91
C 7	98.9	3.08	6.41	0.743	3.70	8.44	91.41	8.58	20.49
C 8	126.1	3.58	9.99	0.764	4.19	12.63	104.95	8.70	29.19
C9	151.3	3.26	13.25	0.775	3.76	16.39	118.82	7.00	36.19
C ₁₀₊	>151.3	86.75	100.00	0.927	83.61	100.00	346	63.81	100.00
C ₁₀	174.6	2.72	15.97	0.7826	3.08	19.47	131.4	5.26	41.45
C ₁₁	196.4	2.64	18.61	0.7962	2.95	22.42	146.2	4.61	46.06
C ₁₂	216.8	2.55	21.16	0.8109	2.80	25.22	159.7	4.07	50.13
C ₁₃	235.9	2.54	23.70	0.8229	2.74	27.96	173.4	3.73	53.86
C ₁₄	253.9	2.62	26.32	0.8324	2.80	30.76	185.6	3.59	57.45
C ₁₅	271	3.19	29.51	0.8498	3.33	34.09	198.5	4.09	61.54
C ₁₆	287.3	2.79	32.30	0.8511	2.92	37.01	218.5	3.26	64.80
C ₁₇	303	2.96	35.26	0.8531	3.08	40.09	235.7	3.20	68.00
C ₁₈	317	2.56	37.82	0.8631	2.63	42.72	249.4	2.61	70.61
C ₁₉	331	2.15	39.97	0.878	2.17	44.89	260.2	2.10	72.71
C ₂₀₊	>331.0	60.03	100.00	0.9733	54.82	99.71	570	26.58	99.29

WIST LAB ASA

Norsk Lab 98-62

	Whole Oil	C ₁₀₊ Fraction	C ₂₀₊ Fraction
Measured MW	257	346	570
Calculated MW using C ₁₀₊ MW	255	-	-
Calculated MW using C ₂₀₊ MW	256	349	-
Measured density	0,891	0,927	0,973
Calculated density using C_{10+} density	0,893	•	-
Calculated density using C_{20+} density	0,892	0,925	-

Table 4.Measured and calculated molecular weights and densities of
crude oil 15/9-19A DST 2B

۰.

Fraction	Weight %	C _{n-1} Rel %	C _n Rel %	C _{n+1} Rel %
C ₄₋	0,76	-	-	-
C5	1,14	-	-	-
C ₆	1,43	0	100	0
C ₇	3,08	0	100	0
C 8	3,58	0	100	0
Cو	3,26	0	100	0
C ₁₀	2,72	0	100	0
C ₁₁	2,64	17	64	19
C ₁₂	2,55	18	60	22
C ₁₃	2,54	17	60	23
C ₁₄	2,62	21	55	24
C ₁₅	3,19	19	52	29
C ₁₆	2,79	21	41	38
C ₁₇	2,96	30	30	40
C ₁₈	2,56	27	28	45
C19	2,15	28	34	38

Table 5.Weight distribution and weight% overlap between fractions
of crude oil 15/9-19A DST 2B

۰.

Component G _p	Weight %	Molecular Weight	Density
C1	0,00	16,0	0,260
C ₂	0,01	30,1	0,350
C3	0,16	44,1	0,508
iC4	0,09	58,1	0,563
nC ₄	0,50	58,1	0,585
2,2-DM-C ₃	0,00	72,2	0,597
iC ₅	0,41	72,2	0,625
nC ₅	0,73	72,2	0,631
Hexanes Total	1,43	84,7	0,669
Hexanes - P	1,32	86,2	0,663
Hexanes - N	0,11	70,1	0,750
Heptanes Total	3,08	91,4	0,743
Heptanes - P	1,32	100,2	0,688
Heptanes - N	1,28	89,0	0,761
Heptanes - A	0,48	78,1	0,884
Octanes Total	3,58	105,0	0,764
Octanes - P	1,40	114,2	0,707
Octanes - N	1,37	104,9	0,771
Octanes - A	0,81	92,1	0,871
Nonanes Total	3,26	118,8	0,775
Nonanes - P	1,57	128,3	0,721
Nonanes - N	0,78	117,7	0,791
Nonanes - A	0,91	106,2	0,870
Decanes Plus	86,75	346,0	0,927

Table 6.Composition of stabilized crude oil 15/9-19A DST 2B
(gas chromatography)

Table 7.Simulated distillation by high-temperature GC-analysis of
the C_{20+} fraction of crude oil 15/9-19A DST 2B

Fraction	% of crude oil (w/w)	% cumulative (w/w)	Boiling point (^o C)
Gas	0,76	0,76	
C.	1,14	1,90	36,5
C,	1,43	3,33	69,2
C ₇	3,08	6,41	98,9
C.	3,58	9,99	126,1
C,	3,26	13,25	151,3
Cia	2,73	15,98	174,6
C ₁₁	2,64	18,62	196,4
C12	2,55	21,17	217,2
Cin	2,54	23,71	235,9
C14	2,62	26,33	253,9
Cis	3,19	29,52	271,1
C16	2,79	32,31	287,3
C17	2,96	35,27	303,0
Cis	2,56	37,83	317,0
Cie	2,15	39,98	331,0
Can	0,93	40,91	344
Cat	1,64	42,56	357
C,,	1,75	44,31	369
C ₂₃	2,01	46,32	381
C ₂₄	1,58	47,90	391
C25	1,67	49,58	402
C ₂₆	1,58	51,16	412
C ₂₇	1,09	52,25	423
C ₂₈	0,77	53,02	431
C ₂₉	2,87	55,89	441
C ₃₀	2,18	58,07	449
C ₃₁	1,51	59,58	457
C ₃₂	1,55	61,13	466
C ₃₃	1,40	62,53	474
C ₃₄	1,25	63,78	481
C ₃₅	1,37	65,15	489
C ₃₆	1,15	66,30	496
C ₃₇	1,08	67,38	502
C ₃₈	1,25	68,62	509
C39	1,17	69,79	516
C ₄₀	1,02	70,81	522
C ₄₁₋₄₅	4,94	75,75	551
C ₄₆₋₅₀	3,77	79,53	575
C ₅₁₋₅₅	3,08	82,60	596
C56-60	2,61	85,21	615
C61-65	2,17	87,38	632
C66-71	1,83	89,21	647
C ₇₁₋₇₅	1,67	90,88	661
C76-80	1,45	92,34	675
C _{\$1-85}	1,23	93,57	688
C86-90	1,22	94,79	700
C ₉₁₋₉₅	1,02	95,81	710
C96-100	0,86	96,68	720
C ₁₀₀₊	3,32	100,00	720+

:

Table 8.Hydrocarbon group type distribution (w/w) in distillation
fractions and residues of crude oil 15/9-19A DST 2B

C _n	Paraffins + naphthenes	Aromatics	Polars	Asphaltenes
6 a	100,0	0,0		
7 a	84,4	15,6		
8 a	77,3	22,6		
9 a	72,1	27,9		
10 c	84,9	15,1		
11 c	79,9	20,1		
12 c	80,2	19,8		
13 c	79,1	20,9		
14 b	74,6	25,4		
15 b	66,3	33,7		
16 b	66,8	33,2		
<u>;</u> 17 b	66,4	33,6		
18 b	65,5	37,5		
19 b	57,4	42,6		
20+ b	27,6	57,0	9,1	6,3
10+ b	34,9	52,9	7,8	4,4

(a) From GC-analysis

(b) Experimental values (preparative liquid chromatography)

(c) Calculated using correlations between density and aromatic content (ref.3)

٠.

Table 9.PNA-distribution of distillation fractions C10 - C19 of crudeoil 15/9-19A DST 2B from GC-MS

Compound	C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₁₄
Paraffins	40,4	40,8	37,7	37,5	37,9
Naphthenes	35,4	34,3	32,4	30,7	29,7
Alkylbenzenes	24,1	21,1	18,3	13,5	10,8
Indanes + Tetralines	0,10	2,89	8,65	12,9	13,5
Naphthalene	0,00	0,89	2,32	0,66	0,13
Alkylnaphthalenes	0,00	0,00	0,64	4,55	6,56
Acenaphthenes + Biphenyles	0,00	0,00	0,00	0,15	1,51
Fluorenes + Acenaphthylenes	0,00	0,00	0,00	0,00	0,00
Phenanthrenes	0,00	0,00	0,00	0,00	0,00
Dibenzothiophenes	0,00	0,00	0,00	0,00	0,00
Compound	C15	C16	C17	C18	C19
Compound Paraffins	C ₁₅ 34,7	C ₁₆ 38,3	C ₁₇ 40,6	C ₁₈ 38,1	<u>C₁₉</u> 32,5
Compound Paraffins Naphthenes	C ₁₅ 34,7 31,0	C ₁₆ 38,3 30,2	C ₁₇ 40,6 28,9	C ₁₈ 38,1 31,0	C ₁₉ 32,5 32,9
Compound Paraffins Naphthenes Alkylbenzenes	C15 34,7 31,0 9,49	C ₁₆ 38,3 30,2 8,62	C ₁₇ 40,6 28,9 7,28	C ₁₈ 38,1 31,0 4,92	C ₁₉ 32,5 32,9 2,05
Compound Paraffins Naphthenes Alkylbenzenes Indanes + Tetralines	C15 34,7 31,0 9,49 12,4	C ₁₆ 38,3 30,2 8,62 7,49	C ₁₇ 40,6 28,9 7,28 4,02	C ₁₈ 38,1 31,0 4,92 1,72	C ₁₉ 32,5 32,9 2,05 0,41
Compound Paraffins Naphthenes Alkylbenzenes Indanes + Tetralines Naphthalene	C15 34,7 31,0 9,49 12,4 0,00	C ₁₆ 38,3 30,2 8,62 7,49 0,00	C ₁₇ 40,6 28,9 7,28 4,02 0,00	C ₁₈ 38,1 31,0 4,92 1,72 0,00	C ₁₉ 32,5 32,9 2,05 0,41 0,00
Compound Paraffins Naphthenes Alkylbenzenes Indanes + Tetralines Naphthalene Alkylnaphthalenes	C15 34,7 31,0 9,49 12,4 0,00 8,75	C ₁₆ 38,3 30,2 8,62 7,49 0,00 7,57	C ₁₇ 40,6 28,9 7,28 4,02 0,00 6,09	C ₁₈ 38,1 31,0 4,92 1,72 0,00 4,61	C ₁₉ 32,5 32,9 2,05 0,41 0,00 2,72
Compound Paraffins Naphthenes Alkylbenzenes Indanes + Tetralines Naphthalene Alkylnaphthalenes Acenaphthenes + Biphenyles	C15 34,7 31,0 9,49 12,4 0,00 8,75 3,42	C ₁₆ 38,3 30,2 8,62 7,49 0,00 7,57 6,70	C ₁₇ 40,6 28,9 7,28 4,02 0,00 6,09 10,6	C ₁₈ 38,1 31,0 4,92 1,72 0,00 4,61 14,38	C19 32,5 32,9 2,05 0,41 0,00 2,72 16,1
Compound Paraffins Naphthenes Alkylbenzenes Indanes + Tetralines Naphthalene Alkylnaphthalenes Acenaphthenes + Biphenyles Fluorenes + Acenaphthylenes	C15 34,7 31,0 9,49 12,4 0,00 8,75 3,42 0,25	C ₁₆ 38,3 30,2 8,62 7,49 0,00 7,57 6,70 0,87	C ₁₇ 40,6 28,9 7,28 4,02 0,00 6,09 10,6 1,30	C ₁₈ 38,1 31,0 4,92 1,72 0,00 4,61 14,38 2,08	C19 32,5 32,9 2,05 0,41 0,00 2,72 16,1 7,69
Compound Paraffins Naphthenes Alkylbenzenes Indanes + Tetralines Naphthalene Alkylnaphthalenes Acenaphthenes + Biphenyles Fluorenes + Acenaphthylenes Phenanthrenes	C15 34,7 31,0 9,49 12,4 0,00 8,75 3,42 0,25 0,00	C ₁₆ 38,3 30,2 8,62 7,49 0,00 7,57 6,70 0,87 0,06	C ₁₇ 40,6 28,9 7,28 4,02 0,00 6,09 10,6 1,30 0,40	C18 38,1 31,0 4,92 1,72 0,00 4,61 14,38 2,08 1,00	C19 32,5 32,9 2,05 0,41 0,00 2,72 16,1 7,69 1,73

Unit : WEIGHT %

۰.

Index	Value
A	0,658
B	1,03
X	0,493
С	1,81
I'	0,683
F	1,46
H	30,04
U	0,612
R'	2,82
W	1,60

Table 10. Thompson's Indices of stabilized crude oil 15/9-19A DST 2B

Definition of Thompson's Indices symbols

- A: Benzene / n-hexane
- B: Toluene / n-heptane
- X: meta+para-xylene / n-octane
- C: $n-C_6 + n-C_7 / (cy-C_6 + methyl-cy-C_6)$
- I': 3-methyl-C₆ / (1-ci,3+1-tr,3+1-tr,2)dimethyl-cy-C₅
- F: n-heptane / methyl-cy-hexane
- H: $100*n-C_7 / ("heptanes" methyl-cy-C_5 2,4-di-methyl-C_5 Benzene + methyl-cy-C_6)$
- U: $cy-C_6 / methyl-cy-C_5$
- R': $n-C_7/3$ -methyl-C₆
- W: Benzene / $cy-C_6$

Table 11.Characteristics ratios of some individual saturated and
aromatic compounds in crude oil 15/9-19A DST 2B

Saturated compounds					
	Area percent ratio				
Pristane/phytane	0,686				
Pristane/n-C ₁₇	0,805				
Phytane/n-C ₁₈	1,32				
n-C ₁₇ /n-C ₂₇	3,95				
CPI 1 *	1,00				
CPI 2 *	0,855				

Aromatic	compounde
Агошанс	compounds

	Area percent ratio
2MN/1MN	1,02
2.6+2.7-/1.4+1.5+2.3 DMN	0,964
Biphenyl/1+2 EN	0,479
Biphenyl/3M-biphenyl	0,178
MPI 1 *	1,27
MPI 2 *	1,07

Ν	= naphtalene
М	= methyl-
DM	= dimethyl-

* See definition of CPI and MPI in Appendix D.

Temp. (^o C)	Dynamic vi	Dynamic viscosity ^b (mPa s)		
8 0°		6,71		
70°		7,80		
60°		11,4		
50°		14,9		
40°		20,7		
		Viscosity ^c (mPa	s) at shear rate	
	30 s ⁻¹	100 s ⁻¹	300 s ⁻¹	500 s ⁻¹
34°	36,7	22,8	23,3	22,6
32°	40,5	24,9	25,3	24,5
30°	47,1	27,5	26,5	25,8
28°	52,5	30,3	30,6	29,8
26°	58,3	33,3	33,9	33,2
24°	66,2	37,1	37,4	36,5
22°	73,9	38,8	41,8	40,4
20°	78,5	43,0	46,7	45,8
18°	84,8	48,9	52,5	50,9
16°	109	59,9	60,4	57,6
14°	126	69,8	69,4	65,3
12°	145	83,9	80,7	74,6
10°	171	103	93,1	85,8
8°	197	129	109	98,1
6°	234	165	129	113
4°	279	217	152	130
2°	331	285	179	154
0°	391	360	209	181

Viscosity^a of crude oil 15/9-19A DST 2B Table 12.

^a Performed by Statoil F&U ^b Calculated from kinematic viscosities and densities in Table 13

^c Viscosimeter cooled at a rate of 12,6 °C/hour from 34 °C to 2 °C at various constant shear rates

west lab asa

۰.

Table 13.Kinematic viscosity and density of crude oil15/9-19A DST 2B at various temperatures

Temperature	Kinematic viscosity ^a (cSt)	Density ^b (kg/m ³)
80°	7,9	849,9
70°	9,1	856,9
60°	13,2	863,9
50°	17,1	870,9
40°	23,6	877,8

^a Performed by Statoil F &U

٠

^b Measured at 15 $^{\circ}$ (895.9 kg/m³) Calculated at other temperatures using API standard 2540 (august 1980).

٠.

Table 14.1Water separation from synthetic water-in-oil emulsionswith crude oil 15/9-19A DST 2B at 50 °C.No emulsion breaker

Water cut (%)		% of or	iginal wat	er separated	l as free wa	ter after	
	1 min	3 min	6 min	10 min	15 min	20 min	30 min
20	0	0	0	0	0	0	0
50	0	0	0	0	0	0	0

Table 14.2Water separation from synthetic water-in-oil emulsions
with crude oil 15/9-19A DST 2B at 50 °C.
10 ppm emulsion breaker #

Water cut (%)		% of o	riginal wate	er separated	as free wat	ter after	
	1 min	3 min	6 min	10 min	15 min	20 min	30 min
20	0	0	5	25	60	70	80
50	2	3	3	34	100	100	100

[#] SOC-6011X (TROS); 10 ppm (vol/vol) based on total volume of oil and water.

west lab asa

20

Figures

 $|\langle \mathcal{G}_{k}^{0}\rangle|$

:

11

Norsk Lab 98-62

west lab asa

Figure 2: Boiling point distribution to C₁₀₀₊ for crude oil 15/9-19A DST 2B

Norsk Lab 98-62

Figure 4: CRUDE OIL 15/9-19A DST 2B

15/9-19A DST 2B C₁₀₊ PARAFFIN + NAPHTHENE FRACTION Figure 5:

Figure 7: 15/9-19A DST 2B C₁₀₊ AROMATIC FRACTION

Figure 8: High temperature gas chromatogram of crude oil 15/9-19A DST 2B

west lab asa

Appendices

APPENDIX A

Table A.1	Detailed com	position	of light end	l of stabilized	crude oil	15/9-19A	DST 2B
-----------	--------------	----------	--------------	-----------------	-----------	----------	--------

Component Name	Mol Wt g/mole	Density g/cc @ 15C	Туре	Weight %	Mole%
C1	16.04	0.26	Р	0	0
C2	30.07	0.358	Р	0.01	0.08
C3	44.10	0.508	Р	0.16	0.92
iC4	58.12	0.563	Р	0.09	0.39
nC4	58.12	0.585	Р	0.5	2.19
2,2,-DM-C3	72.15	0.597	Р	0	0
iC5	72.15	0.625	Р	0.41	1.45
nC5	72.15	0.631	Р	0.73	2.58
2,2,-DMB	86.18	0.654	Р	0	0
Cyc C5	70.13	0.75	N	0.11	0.4
2,3-DMB	86.18	0.666	P	0.03	0.09
2-Me-C5	86.18	0.657	Р	0.34	1
3-Me-C5	86.18	0.669	Р	0.22	0.65
Unassigned C6 P	86.18	0.664	Р	0	0
Unassigned C6 N	86.18	0.664	N	0	0
Unassigned C6 A	86.18	0.664	A	0	0
nC6	86.18	0.664	Р	0.73	2.16
Me-Cy-C5	84.16	0.753	N	0.49	1.48
2,4 di Me -C5	100.20	0.677	Р	0.02	0.05
2,2,3 Tri-Me-C4	100.20	0.659	Р	0	0
Bz	78.11	0.884	Α	0.48	1.56
3,3, di Me-C5	100.20	0.698	Р	0	0
Cyc C6	84.16	0.783	N	0.3	0.91
2-Me-C6	100.20	0.683	Р	0.23	0.58
1,cis-2 Di Me Cyc C5	98.19	0.777	N	0.07	0.18
1,1 Di Me -Cyc C5	98.19	0.759	N	0.01	0.03
3-Me-C6	100.20	0.692	Р	0.28	0.71
1,cis-3 Di Me Cyc C5	98.19	0.749	N	0.1	0.26
1,tr-3 Di Me Cyc C5	98.19	0.753	N	0.11	0.29
1,tr-2 Di Me Cyc C5	98.19	0.756	N	0.2	0.52
Unassigned C7 P	100.20	0.688	Р	0	0
Unassigned C7 N	100.20	0.688	N	0	0
Unassigned C7 A	100.20	0.688	A	0	0
nC7	100.20	0.688	Р	0.79	2.01
Me-Cy-C6	98.19	0.774	N	0.54	1.4
1,1,3 Tri Me Cyc C5	112.21	0.753	N	0.02	0.05
Et Cyc C5	98.19	0.771	N	0.15	0.39
2,5 Di Me C6	114.23	0.698	Р	0.04	0.09
2,4 Di Me C6	114.23	0.704	Р	0.04	0.09

Cont. table A1	Mol Wt g/mole	Density g/cc @ 15C	Density Type cc @ 15C		Mole%
1,tr-2-cis-4- Tri Me Cyc C5	112.21	0.752	N	0.05	0.11
1,tr-2-cis-3- Tri Me Cyc C5	112.21	0.758	N	0.08	0.18
2,3,4 Tri Me C5	114.23	0.723	Р	0.01	0.02
Tol	92.14	0.871	A	0.81	2.24
1,1,2 Tri Me Cyc C5	112.21	0.777	N	0.03	0.07
2,3 Di Me C6	114.23	0.716	P	0.03	0.07
2 Me C7	114.23	0.702	Р	0.29	0.65
4 Me C7	114.23	0.709	Р	0.08	0.18
3,4 Di Me C6	114.23	0.724	Р	0.01	0.02
3 Me C7	114.23	0.71	Р	0.16	0.36
1,cis-3 Di Me Cyc C6	114.23	0.77	N	0.15	0.33
1, trans- 4 Di Me Cyc C6	112.21	0.767	N	0.06	0.14
1,1 Di Me Cyc C6	112.21	0.785	N	0.01	0.02
1, Me trans-2-Et Cyc C5	112.21	0.773	N	0.15	0.34
1, trans-2-Di Me Cyc C6	112.21	0.78	N	0.07	0.16
Unassigned C8 P	114.23	0.707	Р	0.05	0.11
Unassigned C8 N	112.20	0.77	N	0.06	0.14
Unassigned C8 A	114.23	0.707	A	0	0
nC8	114.23	0.707	Р	0.69	1.54
1, cis-2 Di Me Cyc C6	112.21	0.8	N	0.03	0.07
1, cis-2 Di Me Cyc C6	112.21	0.8	N	0.02	0.05
Et Cyc C6	112.21	0.79	N	0.4	0.91
1,1,3 Tri Me Cyc C6	126.20	0.783	N	0.12	0.24
ETB	106.17	0.871	A	0.37	0.89
m-Xylene	106.17	0.868	A	0.27	0.65
p-Xylene	106.17	0.868	A	0.07	0.17
4 Me C8	128.26	0.724	Р	0.1	0.2
2 Me C8	128.26	0.717	Р	0.15	0.3
3 Me C8	128.26	0.724	Р	0.19	0.38
o-Xylene	106.17	0.884	A	0.2	0.48
1 Me 3 Et Cyc C6	126.20	0.8	N	0.09	0.18
1 Me 4 Et Cyc C6	126.20	0.79	N	0.04	0.08
Unassigned C9 P	128.26	0.721	Р	0.44	0.87
Unassigned C9 N	126.20	0.79	N	0.08	0.16
Unassigned C9 A	128.26	0.721	A	0	0
nC9	128.26	0.721	Р	0.69	1.37
C10+	346.00	0.927		86.75	63.81
Totals				100.00	100.00

APPENDIX B

.

Composition of synthetic formation water used in the emulsion stability test of crude oil 15/9-19A DST 2B

33

Salt	Concentration g/l
NaCl	118,045
KCl	3,337
CaCl ₂ ·2H ₂ O	28,758
MgCl ₂ ·6H ₂ O	19,986
BaCl ₂ ·2H ₂ O	0,027
SrCl ₂ ·6H ₂ O	0,971

Based on composition of formation water from well 15/9-19A.

APPENDIX C

A brief description of analytical methods.

1. Distillation

TBP Distillation is performed using a semi automatic MK IV distillation system comprising 25 mm distillation Still and controller from H.S. Martin Inc. (New Jersey, USA). The system operates in accordance with the requirements of ASTM Method D2892 and at operating conditions produces around 15 theoretical plates.

Distillation is performed up to n-C₉ at atmospheric pressure to produce a C_{10+} fraction. It is then continued at 100 mmHg up to n-C₁₂ and at 10 mmHg up to n-C₁₉ producing a C₂₀₊ residue. Reflux ratios vary from 6:1 down to 4:1 as the distillation progresses. Cut points for each fraction are taken at atmospheric equivalent temperatures reported by Katz and Firoozabadi and are reported in **table 3**. Direct measurements of the C₁₀₊ and C₂₀₊ molecular weight and density are performed. Corrections for overlap from chromatographic analysis of the fractions were made to produce a `pure` C10+ weight % molecular weight and density.

<u>2. Gas Chromatogram of</u> whole oil is recorded using a CP Sil 5 CB column (25 m x 0,23 mm i.d., 0,13 μ m filmthickness) and FI-detector (ref. 7). The following temperature programme is used:

10 °C 2 min	
6 °C/min to 300 °C	
Injector (split):	300 °C
Detector:	320 °C

A gas chromatographic analysis is also performed on the whole oil sample to obtain a detailed composition of the C₉ minus fraction. The physical properties of the C₄-C₉ fractions are calculated from the detailed component breakdown. The C₁₀₊ wt% composition is adjusted to conform to the value measured from the the distillation.

The whole oil GC analysis is performed using a megabore capillary column (DB-1 liquid phase, 30 m x 0,53 mm i.d.) and the detailed component breakdown is performed using Chrompack SIL narrow bore capillary column ($50 \times 0,25 \text{ i.d.}$).

<u>3. High-temperature gas chromatographic analysis of C_{20+} </u> is carried out on a Carlo Erba Mega Series Chromatograph with a 5 m x 0.5 mm i.d. WCOT Ultimetal. HT-SIMDIST CB (Modified ASTM D5307).

Temperature program: 35 °C 2 min 5 °/min to 390 °C 390 °C 20 min 10 °/min to 430 °C 430 °C 10 min Detector, FID: 400 °C The C₂₀₊ samples are analyzed using combined C₁₃-C₁₄ fraction as internal standard.

<u>4. Molecular weights</u> are determined by freezing point depression of benzene (Cryette, Precision Instr.), except for C₄-C₉ which are calculated from GC composition. Precision of the method is about 1,5 % (RSD) for residues and about 1 % for lower fractions.

<u>5. Densities</u> of liquid fractions are measured using a Paar DMA 48 frequency densitometer, thermostated at 15 °C. Precision of the method is +/- 0.0002 g/cc. Densities of the C₄-C₉ fractions are calculated from the GC composition. Density of the C₂₀₊ residue is measured by IP 190 (pyknometer).

6. Water content (wt %) is determined by Karl Fischer titration.

7. Sulphur content is determined by X-ray fluorescence (Siemens SRS 300,ASTM D2622, rev 3).

<u>8. Wax Content</u> is determined by a modified UOP method 46-64, (ref. 8 and 9), the acetone precipitation technique. The wax is precipitated with acetone at -25 °C and filtrated. The precipitate is purified by elusion through a short silica cartridge.

9. Thermal pretreatment (benefication) of crude oil. Separator oil collected in 20 litre Xample-bottle is depressurized in one step to atmospheric pressure and room temperature after being heated to about 60 °C in the bottle. The stabilized crude oil is transferred to a 1 litre gas-tight stainless steel pretreatment cell. It is emphasized to conduct the transfer quickly in order to minimize exposure to air and light which may cause oxidation processes to occur with formation of surface active species. The crude is topped with nitrogen and heated to 80 °C for 2 hours in order to dissolve wax and thus erase the memory of previous wax formation. Finally, the oil is cooled at a rate of 12.6 °C/hour to the actual test temperature before transfer to the various instruments (pour point, viscosity).

<u>**10.** Pour poin</u>: The method to determine the Pour Point is a modified version (ref. 9) of ASTM D97 (ref. 10):

- The Pour point "as received" is the Pour point measured on the untreated oil (no thermal pretreatment).

- The Minimum Pour point is the Pour point measured after controlled cooling from 80 °C.

- The Maximum Pour point is the Pour point measured after reheating the oil to 50 °C followed by controlled recooling.

<u>11 a. Wax precipitation temperature (WPT)</u> is determined by polarization microscopy. The sample is cooled at a rate of 0.5 °C/min after first being heated to 70 °C. For detailes, see ref. 9.

<u>11 b. Wax dissolution temperature (WDT)</u> is determined in the same way as WPT. When WPT has been established, the sample is left at room temperature for at least 30 minutes, and then reheated at a rate of 0.5 °C/min.

<u>12. Kinematic viscosity</u> is measured in the Newtonian temperature range using a Ubbelohde glass capillary viscometer with an appropriate capillary constant. The viscometer tubes are kept in a thermostated bath for 15 minutes at each temperature prior to measurements, which are run four times. The kinematic viscosity is related to dynamic viscosities as follows :

Dyn. visc. (mPa s) = Kin.visc.(cSt)*Density (g/cm³). cSt = 10^{-2} mm²/s.

<u>13. Apparent viscosity</u> of thermally beneficiated oil is measured with Paar Physica USD (Universal Dynamic Specrometer) 200 reometer with Z1 DIN (double gap) sylinder. The heater/cooler is a LAUND RC6 CP with siliconoil as medium. Viscosity vs. temperature at various shear rates is run in the non-Newtonian temperature range of the oil.

<u>**14. Pentane insolubles (asphaltenes)**</u> are precipitated with pentane at room temperature (1:40 vol:vol) and filtrated through a 0,45 μ m filter. The precipitated material is dissolved in toluene, followed by precipitation with pentane and a new filtration through a 0,45 μ m filter.

15 a. Hydrocarbon group type analysis of C_{10+} , C_{20+} and distillation-fractions are performed by preparative liquid chromatography using a silica column to separate aromatics from saturates (paraffins/naphthenes). The polar fraction is estimated from the correlation between the aromatic and the polar fraction (**ref. 4**). The solvent is removed by vacuum evaporation, and the fractions quantified by weighing. Residual hexane is determined by GC with internal standard.

15 b. Hydrocarbon group type analysis of distillation fractions C_{10} to C_{19} is performed by gas chromatography-mass spectrometry using regular electron impact ionisation. The distribution of paraffins and naphthenes as well as a series of aromatic subclasses are determined. The aliphatic compounds are determined by intergration of the most intense fragment ions. A matrix calculation is then used to correct for interferences between the aliphatic compounds (ref. 3).

Experimental conditions :

Mass spectrometer	: Finnigan MAT SSQ 700
Inlet system	: Varian 3400
Data system:	: DecStation 5000/133

Temp.prog.GC	: 30 °C 2 min.,4 °C/min. to 250 °C- 250 °C 15 min.
Injector temp.	: 275 °C
Ion source temperature	: 150 °C
Ionization potential	: 70 eV
Resolution	: 500
Scan rate	: 35-350
Scanning	: 0.5 sec./scan
Carrier gas	: Helium
Column	: 30m DB-5 MS, 0,25 µm film, 0,25 mm i.d., 12 psi
Injection	: 1 µl, split 50 ml/min

16. Nitrogen bases in hydrocarbons is determined by potentiometric titration, UOP Method 269-70T, (ref. 12). Organic bases are titrated potentiometrically in an anhydrous medium employing glacial acetic acid as the solvent. The electrode system is glass vs. calomel.

17. Acid Number of Petroleum Products is determined by Potentiometric Titration, ASTM Method D664-87, (ref. 13). The sample is dissolved in a mixture of toluene and isopropyl alchohol, containing a small amount of water and titrated potentiometrically with alcoholic potassium hydroxide. The electrode system is glass vs. calomel.

18. Emulsion stability test :

Equipment:

Homogenizer:

Propeller type - Buhler HO4 incl.Heto temp.controller and circulator. Heto Lab. Equipment Circulator bath:

Experimental procedures:

The crude oil was sampled directly from the pressurized bottle (a single flash to ambient conditions). A representative sample of the "flashed" oil was added to an appropriate volume of synthetic formation water in the homogenizer and kept at the specified temperature.

Standard emulsification conditions are :

Propeller speed	: 8000 rpm
Mixing time	: 1 min.
Mixing volume	$: 11 \text{ cm}^3$
Temperature	: 50 °C
Water cut	: 20 % and 50 %

After homogenizing, the emulsion was transferred to a preheated, screw capped, graded glass vial (10 cm³). The demulsifier was added immediately after emulsification by shaking for 30 seconds and placed in a thermostated bath kept at the specified temperature (50 °C). The separation of free water was recorded as a function of time for 30 minutes. The demulsifier was diluted with xylene. 10µl xylene solution was added, giving the wanted concentration of demulsifier (10 ppm). Synthetic formation water was mixed according to the recipe given in Appendix B.

APPENDIX D

Definition of Carbon Preference Indices :

CPI 1 = $1/2((C_{25}+C_{27}+C_{29}+C_{31})/(C_{24}+C_{26}+C_{28}+C_{30})$ + $(C_{25}+C_{27}+C_{29}+C_{31})/(C_{26}+C_{28}+C_{30}+C_{32}))$

38

CPI 2 = 2 $C_{27} / (C_{26} + C_{28})$

Definition of Methyl Phenantrene Indices :

MPI 1 =
$$\frac{1.5 (2-MP + 3-MP)}{P + 9-MP + 1-MP}$$

MPI 2 =
$$\frac{3(2-MP)}{P+9-MP+1-MP}$$

Enclosures

Ŀ

Ĵ

Ê

ġ

3

Š,

ġ

Ś

1

Ĩ.

J

۳.

3

T M

R

1

T.B.P. Distillation Study

for

Den Norske Stats Oljeselskap a.s.

Our File : RFLA 980008

Well : 15/9-19A Sleipner 98-62

The analyses, opinions or interpretations in this report are based on observations and material supplied by the client to whom, and for whose exclusive and confidential use this report is made. The interpretations or opinions expressed represent the best judgement of Core Laboratories (all errors and omissions excepted); but Core Laboratories and its officers and employees assume no responsibility and make no warranty or representations as to the productivity, proper operation or profitability of any oil, gas or other mineral well formation in connection with which such report is used or relied upon.

Advanced Technology Centre

16th February 1998

Den Norske Stats Ojleselskap a.s. N-4035 Stavanger NORWAY

Subject: Distillation StudyWell: 15/9-19AContract: DTJ017535Our File: RFLA 980008

Attention : Ms. Brit Bjorndal

Dear Madam,

Core Laboratories have recently completed a high temperature fractional distillation study on fluids from well 15/9-19A, the results of which are presented in this report.

The laboratory data is presented in the report as follows :-

Table 1	:	Distillation Data
Table 2	:	Molecular Weight and Density Properties
Table 3	:	Wt% overlap between fractions
Table 4	:	Detailed Compositional Analysis of Whole Oil inc. Thompsons Indices
Table 5	:	PNA Distribution
Appendix 1	:	Summary of Laboratory Procedures

We trust that our service has met with your approval and look forward to the opportunity of working with Den Norske Stats Ojleselskap a.s. again in the future.

Yours faithfully,

3

Ì

1

Core Laboratories (U.K.) Limited

Antilianson

Andy Williamson Snr. Fluids Supervisor -Exploration and Production Chemistry Group

Statoil File : RFLA 980008 Well : 15/9-19A

L.

. . .

High Temperature Fractional Distillation Data

Table 1

Cut	Temp	Wt%	Cum Wt%	Density	Vol%	Cum Vol%	Mol Wt	Mole %	Cum Mol %
C4-	deg C	0.76	0.76	0.560	1 21	1 21	53.9	3 58	3.58
C5		1.14	1.90	0.628	1.62	2.83	72.2	4.03	7.61
C6	69.2	1.43	3.33	0.669	1.91	4.74	84.7	4.30	11.91
C7	98.9	3.08	6.41	0.743	3.70	8.44	91.4	8.58	20.49
C8	126.1	3.58	9.99	0.764	4.19	12.63	105.0	8.70	29.19
C9	151.3	3.26	13.25	0.775	3.76	16.39	118.8	7.00	36.19
C10+	>151.3	86.75	100.00	0.927	83.61	100.00	346.0	63.81	100.00
C10	174.6	2.72	15.97	0.783	3.08	19.47	131.4	5.26	41.45
C11	196.4	2.64	18.61	0.796	2.95	22.42	146.2	4.61	46.06
C12	216.8	2.55	21.16	0.811	2.80	25.22	159.7	4.07	50.13
C13	235.9	2.54	23.70	0.823	2.74	27.96	173.4	3.73	53.86
C14	253.9	2.62	26.32	0.832	2.80	30.76	185.6	3.59	57.45
C15	271.0	3.19	29.51	0.850	3.33	34.09	198.5	4.09	61.54
C16	287.3	2.79	32.30	0.851	2.92	37.01	218.5	3.26	64.80
C17	303.0	2.96	35.26	0.853	3.08	40.09	235.7	3.20	68.00
C18	317.0	2.56	37.82	0.863	2.63	42.72	249.4	2.61	70.61
C19	331.0	2.15	39.97	0.878	2.17	44.89	260.2	2.10	72.71
C20+	>331.0	60.03	100.00	0.973	54.82	99.71	569.5	26.58	99.29

Core Laboratories (U.K.) Limited

Statoil File : RFLA 980008 Well : 15/9-19A Sleipner

3

3

3

3

3

3

3

1

]

]

3

3

2

Ŗ

1

Ī

2

Ļ

j

.

:

<u>Table 2</u>

Measured and Calculated Molecular Weights and Densities of Crude Oil ex Well 15/9-19A

	Whole Oil	C10+ Fraction	C20+ Fraction
Measured MWt	257	346	570
Calc MWt using C10+ MWt	255	-	-
Calc MWt using C20+ MWt	256	349	-
Measured Density	0.891	0.927	0.973
Calc density using C10+ density	0.893	-	-
Calc density using C20+ density	0.892	0.925	-

Statoil File : RFLA 980008 Well : 15/9-19A Sleipner

3

3

3

3

Ì

3

Ì

Ì

Ŀ

3

ì

3

2

3

3

۶

Table 3

Wt% Overlap between Distillation Fractions

of Crude Oil ex Well 15/9-19A Sleipner

Fraction	Weight %	Cn-1 Rel %	Cn Rel %	Cn+1 Rel %
C4-	0.76	-	-	-
: C5	1.14	-	-	-
C6	1.43	0	100	0
C7	3.08	0	100	0
C8	3.58	0	100	0
C9	3.26	0	100	0
C10	2.72	0	100	0
C11	2.64	17	64	19
C12	2.55	18	60	22
C13	2.54	17	60	23
C14	2.62	21	55	24
C15	3.19	19	52	29
C16	2.79	21	41	38
C17	2.96	30	30	40
C18	2.56	27	28	45
C19	2.15	28	34	38

Statoil RFLA 980008 15/9-19A Sleipner

Ĩ

٦

3

3

ğ

3

3

Ì

Ì

I

2

5

1

2

C

R

ר

3

Table 4 Page 1 of 2

•

Detailed Compositional Analysis

Component	Mol Wt	Density	Туре	Weight %	Mole%
Name	g/mole	g/cc @ 15C			
	16.04	0.260	P	0.00	0.00
	30.07	0.358		0.01	0.08
	69.12	0.508	P	0.16	0.92
InC4	58.12	0.503	Г Р	0.09	2 19
2.2DM-C3	72.15	0.597	Р	0.00	0.00
iC5	72.15	0.625	P	0.41	1.45
nC5	72.15	0.631	Р	0.73	2.58
2.2,-DMB	86.18	0.654	P	0.00	0.00
Cyc C5	70.13	0.750	N	0.11	0.40
2.3-DMB	86.18	0.666	Р	0.03	0.09
2-Me-C5	86.18	0.657	Р	0.34	1.00
3-Me-C5	86.18	0.669	Р	0.22	0.65
Unassigned C6 P	86.18	0.664	P	0.00	0.00
Unassigned C6 N	86.18	0.664	N	0.00	0.00
Unassigned C6 A	86.18	0.664	A	0.00	0.00
	80.18	0.004	<u>Р</u>	0.73	2.10
2 4 di Mo - C5	100.20	0.755		0.49	0.05
2.2.3 Tri-Me-C4	100.20	0.659	P	0.02	0.00
Bz	78.11	0.884	A	0.48	1.56
3.3. di Me-C5	100.20	0.698	Р	0.00	0.00
Cyc C6	84.16	0.783	N	0.30	0.91
2-Me-C6	100.20	0.683	Р	0.23	0.58
1.cis-2 Di Me Cyc C5	98.19	0.777	N	0.07	0.18
1,1 Di Me -Cyc C5	98.19	0.759	N	0.01	0.03
3-Me-C6	100.20	0.692	Р	0.28	0.71
1.cis-3 Di Me Cyc C5	98.19	0.749	N	0.10	0.26
1.tr-3 Di Me Cyc C5	98.19	0.753	N	0.11	0.29
1.tr-2 Di Me Cyc C5	98.19	0.756	N	0.20	0.52
Unassigned C7 P	100.20	0.688	P	0.00	0.00
Unassigned C7 A	100.20	0.088	N	0.00	0.00
	100.20	0.000	Þ	0.00	2.01
Me-Cy-C6	98.19	0.000	N	0.54	1.40
1.1.3 Tri Me Cvc C5	112.21	0.753	N	0.02	0.05
Et Cyc C5	98.19	0.771	N	0.15	0.39
2.5 Di Me C6	114.23	0.698	Р	0.04	0.09
2.4 Di Me C6	114.23	0.704	Р	0.04	0.09
1.tr-2-cis-4- Tri Me Cyc C5	112.21	0.752	N	0.05	0.11
1.tr-2-cis-3- Tri Me Cyc C5	112.21	0.758	N	0.08	0.18
2.3.4 Tri Me C5	114.23	0.723	Р	0.01	0.02
Тоі	92.14	0.871	A	0.81	2.24
1.1.2 Tri Me Cyc C5	112.21	0.777	N	0.03	0.07
2.3 Dr Me C6	114.23	0.716	P	0.03	0.07
2 Me C7	114.23	0.702		0.29	0.65
4 Me C/	114.23	0.709	P	0.08	0.18
3.4 DI ME CO	114.23	0.724	P	0.01	0.02
1 cis-3 Di Me Cvc C6	114.23	0.710	F N	0.10	0.30
1. trans- 4 Di Me Cvc C6	112 21	0.767	N	0.06	0.14
1,1 Di Me Cyc C6	112.21	0.785	N	0.01	0.02
1. Me trans-2-Et Cyc C5	112.21	0.773	N	0.15	0.34
1. trans-2-Di Me Cyc C6	112.21	0.780	N	0.07	0.16
Unassigned C8 P	114.23	0.707	Р	0.05	0.11
Unassigned C8 N	112.20	0.770	N	0.06	0.14
Unassigned C8 A	114.23	0.707	A	0.00	0.00
InC8	114.23	0.707	P	0.69	1.54
1. cis-2 Di Me Cyc C6	112.21	0.800	N	0.03	0.07
LL CIS-Z DI ME CYC C6	112.21	0.800	N	0.02	0.05
	112.21	0.790	IN NI	0.40	0.91
FTB	106.17	0.703		0.12	0.24
m-Xylene	106.17	0.868	A	0.27	0.65
p-Xylene	106.17	0.868	A	0.07	0.17
4 Me C8	128.26	0.724	Р	0.10	0.20
2 Me C8	128.26	0.717	Ρ	0.15	0.30
3 Me C8	128.26	0.724	Р	0.19	0.38
o-Xylene	106.17	0.884	A	0.20	0.48
1 Me 3 Et Cyc C6	126.20	0.800	N -	0.09	0.18
1 Me 4 Et Cyc C6	126.20	0.790	N	0.04	0.08
Unassigned C9 P	128.26	0.721	Р	0.44	0.87
Unassigned C9 N	126.20	0.790	N	0.08	0.16
Unassigned C9 A	128.26	0.721	A	0.00	0.00
010.	128.20	0.027	P	0.09	62.04
	340.00	0.321		100.00	100.00
10/8/3	· · · · · · · · · · · · · · · · · · ·	ليستحدث والمسالية المستحد	المهنمة درد متستقد	100.00	100.00

Statoil **RFLA 980008** 15/9-19A Sleipner

Table 4 Page 2 of 2 1 -

Detailed Compositional Analysis

PNA Analysis of C9 Minus

Š

9

Ĩ

3

Ì,

Ţ

ġ.

Ì

Ĩ

ſ

Ì

3

1

3

Þ

5

J

2

Ì

C6 C7

C8 C9

Group	Weigh	11% PNA Distr	ribution	Total
-	P	N	Α	
C1	0.00	0.00	0.00	0.00
C2	0.01	0.00	0.00	0.01
C3	0.16	0.00	0.00	0.16
C4	0.59	0.00	0.00	0.59
C5	1.14	0.00	0.00	1.14
C6	1.32	0.11	0.00	1.43
C7	1.32	1.28	0.48	3.08
C8	1.40	1.37	0.81	3.58
C9	1.57	0.78	0.91	3.26
Total	7.51	3.54	2.20	13.25

Group	Mole	Mole% PNA Distribution			
	P	N	Α		
C1 .	0.00	0.00	0.00	0.00	
C2	0.08	0.00	0.00	0.08	
C3	0.92	0.00	0.00	0.92	
C4	2.58	0.00	0.00	2.58	
C5	4.03	0.00	0.00	4.03	
C6	3.90	0.40	0.00	4.30	
C7	3.35	3.67	1.56	8.58	
C8	3.13	3.33	2.24	8.70	
C9	3.12	1.69	2.19	7.00	
Total	21.11	9.09	5 99	36.19	

Group	P	NA Density D	ata
	P	N	А
C1	-	-	-
C2	-	-	•
C3	-	-	•
C4	-	-	-
C5	-	-	-
C6	0.6631	0.7500	-
C7	0.6878	0.7613	0.8840
C8	0.7065	0.7710	0.8710
C9	0.7212	0.7907	0.8696
Group	<u> </u>	PNA MWt Dat	a
	P	N	А
C1	•	-	-
C2	-	-	•
C3	-	-	-
C4	-	-	
C5	-	-	

86.18

100.20

114.23

128.26

70.13

89.03

104.87

117.73

.

78.11

92.14

106.17

Thompson Index Key

A - Bonzene / n-Hexane

- A Bonzene /n-Hexane
 B Toluone/n-Hexane
 A m+p Xylene /n-Octane
 C (nC6 + nC7) /(CycC6 + MeCycC6)
 i 3MeC6 /(1cr3 + 1r3 + 1r2DiMeCycC5)
 I (2MeC6 + 3MeC9) /
 (1cr3 + 1r3 + 1r2DiMeCycC5)
 F n-Heptane / MeCycC6
 H (100 x nC7) /(sumC7 + (MeCycC5 + 2.4DiMeC5 + 82) + MeCycC6)
 U CycC6 / MeCycC5
 B + nC7 / 2MeC6
- R
 nC7 / 2MeC6

 R'
 nC7 / 3MeC6

 W
 Bonzene / CycC6

Thompson Index	Value
	+
A	0.658
В	1.025
X	0.493
С	1.810
r	0.683
1	1.244
F	1.463
н	30.038
U	0.612
R	3.435
R'	2.821
(w	1.600
L	

:

Statoil File : RFLA 980008 Well : 15/9-19A Sleipner

• ••

Table 5

Compositional Analysis of Stab Crude Oil ex 15/9-19A by Gas Chromatography

Component Gp	Weight %	Molecular Weight	Density
C1	0.00	16.0	0.260
C2	0.01	30.1	0.350
C3	0.16	44.1	0.508
iC4	0.09	58.1	0.563
nC4	0.50	58.1	0.585
2,2-DM-C3	0.00	72.2	0.597
iC5	0.41	72.2	0.625
nC5	0.73	72.2	0.631
Hexanes Total	1.43	84.7	0.669
Hexanes - P	1.32	86.2	0.663
Hexanes - N	0.11	70.1	0.750
Heptanes Total	3.08	91.4	0.743
Heptanes - P	1.32	100.2	0.688
Heptanes - N	1.28	89.0	0.761
Heptanes - A	0.48	78.1	0.884
Octanes Total	3.58	105.0	0.764
Octanes - P	1.40	114.2	0.707
Octanes - N	1.37	104.9	0.771
Octanes - A	0.81	92.1	0.871
Nonanes Total	3.26	118.8	0.775
Nonanes - P	1.57	128.3	0.721
Nonanes - N	0.78	117.7	0.791
Nonanes - A	0.91	106.2	0.870
Decanes Plus	86.75	346.0	0.927

Note :

5

1

Į.

r

-

i,

ł

3

9

2

i,

4

Decanes plus properties and wt% from distillation corrected for overlap between C9 and C10

CORE LABORATORIES (U.K.) LIMITED

Advanced Technology Centre

Statoil File : RFLA 980008 Well : 15/9-19A

Appendix 1

Summary of Laboratory Procedures

Distillation

i.

TBP Distillation is performed using a semi automatic MK IV distillation system comprising 25mm distillation Still and controller from H.S. Martin Inc. (New Jersey, USA). The system operates in accordance with the requirements of ASTM Method D2892 and at operating conditions produces around 15 theoretical plates.

Distillation is performed up to nC9 at atmospheric pressure to produce a C10+ fraction. It is then continued at 100mm Hg up to nC12 and at 10 mm Hg up to nC19 producing a C20+ residue. Reflux ratios vary from 6:1 down to 4:1 as the distillation progresses. Cut points for each fraction are taken at atmospheric equivalent temperatures reported by Katz and Firoozabadi and are reported in Table 1.

Direct measurements of the C10+ and C20+ molecular weight and density are performed. Corrections for overlap from chromatographic analysis of the fractions were made to produce a 'pure' C10+ weight %, molecular weight and density.

ii. Chromatographic Analysis

A gas chromatographic analysis is performed on the whole oil sample to obtain a detailed composition of the C9 minus fraction. The physical properties of the C4 - C9 fractions are calculated from the detailed component breakdown. The C10+ wt% composition is adjusted to conform to the value measured from the distillation.

The whole oil GC analysis is performed initially using a megabore capillary column (DB-1 liquid phase, 30M x 0.53mm i.d.) with temp programming as follows; 35° C held for 2 mins with temp programming at 15° C/min up to 300° C. Hold 300° C for 70 mins.

The detailed component breakdown is performed using a Chrompack narrow bore capillary column (CP-SIL 5CB liquid phase, 50M x 0.25mm i.d.) with temp programming as follows: 30°C held for 7 mins with temp programming at 3°C/min up to 320°C. Hold 320°C for 70 mins.

iii. Molecular Weights

Molecular weights for C4 to C9 fractions were calculated from the detailed compositional analysis. Molecular weights for the C10 - C19 fractions, C10+ and C20+ residues were measured by Depression of Freezing Point of Benzene (Cryette, Precision Systems instrument).

CORE LABORATORIES (U.K.) LIMITED

Advanced Technology Centre

Den Norske Stats Oljeselskap a.s.

RFLA: 980008

15/9-19A Sleipner

Ì

Ì

5

Ļ

Core Laboratories (U.K.) Limited

;

Amiliainson.

Andy Williamson Snr. Fluids Supervisor -**Exploration and Production Chemistry Group**

STATOIL

Den norske stats oljeselskap a.s

		R	apportnummer:
PKS RAPPORT			811-015
PRODUKTTEKNISK KOMPETANSE OG SERVICE SENTER		G	radering:
STATOIL - MARKETING		TI	56 34 46 00
		Te	lefax: 56 36 20 50
Rapportens tittel: High temperat W	ure simulat /ell 15/9-19/	ed destillat A	ion
Seksjon:	Dato:	A	ntall sider og bilag
KP	3	0.03.98	5
Utarbeidet av:	Godkjer	it av:	
30.07.58 <u>Ifjeli Ame Ulivand</u> Kjell Arne Ulvund	<u>30.03.98</u> .	Connie T	homsen
Prosjekt/Oppdrag:			
Oppdragsgiver:		Oppdragsg	iver ref:
WestLab v/A.M. Eide		Ore	dre 1998-62 DTJ02021
WestLab v/A.M. Eide Kort sammendrag:		Or:	dre 1998-62 DTJ02021
WestLab v/A.M. Eide Kort sammendrag:		Ort	dre 1998-62 DTJ02021
WestLab v/A.M. Eide Kort sammendrag:		Ort	dre 1998-62 DTJ02021
WestLab v/A.M. Eide Kort sammendrag:		Or.	dre 1998-62 DTJ02021
WestLab v/A.M. Eide Kort sammendrag:		Or.	dre 1998-62 DTJ02021
WestLab v/A.M. Eide Kort sammendrag:		Ort	dre 1998-62 DTJ02021

Den norske stats oljeselskap a.s

ANALYSIS REPORT

High temperature simulated destillation

Date: Work description:	30.03.98 High temperature simulated destillation Well 15/9-19A
Customer:	WestLab v/A.M. Eide
PKS contract no.: Samples received:	811-015 10.02.98

The sample is analysed according to ASTM5307 modified to account for a higher end boiling point.

The sample is analysed with and without an internal standard and the residual fraction (>C100, 725 °C) is calculated.

Data from C1 to C19 provided from Core Lab.

RESULTS

SAMPLE	Final Boiling Point (°C)	Residual Fraction (>720 °C)
Well 15/9-19A	NA	3,3

Fraction	% of crude oil	% Cumulative	Boiling Point
	(w/w)	(w/w)	(°C)
Gas	0.76	0.76	()
C5	1 14	1.90	36.5
C6	1 43	3.33	69.2
C7	3.08	6 41	98.9
C8	3 58	9,41	126 1
C9	3,50	13 25	151 3
	0,20	10,20	101,0
C10	2 73	15.98	174 6
C11	2,64	18 62	196.4
C12	2,55	21 17	217.2
C13	2,55	23.71	217,2
C14	2,34	26,33	253,9
C15	2,02	20,55	200,9
C16	2 70	20,02	211,1
C10	2,19	25.27	207,3
C12	2,90	27.02	303,0
C10	2,50	37,03	317,0
C19	2,15	29,90	331,0
000	0.00	40.04	
620	0,93	40,91	344
021	1,64	42,50	357
022	1,75	44,31	369
C23	2,01	46,32	381
C24	1,58	47,90	391
C25	1,67	49,58	402
C26	1,58	51,16	412
C27	1,09	52,25	423
C28	0,77	53,02	431
C29	2,87	55,89	441
C30	2,18	58,07	449
C31	1,51	59,58	457
C32	1,55	61,13	466
C33	1,40	62,53	474
C34	1,25	63,78	481
C35	1,37	65,15	489
C36	1,15	66,30	496
C37	1,08	67,38	502
C38	1,25	68,62	509
C39	1,17	69,79	516
C40	1,02	70,81	522
C41-45	4,94	75,75	551
C46-50	3,77	79,53	575
C51-55	3,08	82,60	596
C56-60	2,61	85,21	615
C61-65	2,17	87,38	632
C66-70	1,83	89,21	647
C71-75	1,67	90,88	661
C76-80	1,45	92,34	675
C81-85	1,23	93,57	688
C86-90	1,22	94,79	700
C91-95	1,02	95,81	710
C96-100	0,86	96,68	720
C100+	3,32	100,00	720+

Simulated distillation by high-temperature GC analysis Sample: Well 15/9-19A

Norsk lab A/S Oljeveien 2 4056 Tananger

Attn.: Anne Mette Eide

SINTEF Applied Chemistry

Adresse/Address: Postboks 124 Blindern N-0314 Oslo 3, NORWAY

Besøksadresse/Location: Forskningsveien 1

Telefon/Telephone: +47 22 06 73 00

Telefax: +47 22 06 73 50

Telex: 71 536 SI N

Enterprise no.: NO 948 007 029 MVA

Sample series:

1998-86 (1-10)

Report

 Your ref.:
 Our ref.:
 Direct line:
 Oslo,

 1998-62
 HVD
 22 06 76 96
 1998-02-26

 DTJ020215
 Project no.:
 664022.00

Project title: Analysis of C_{10} - C_{19} fractions

Summary

A total of 10 fractions ($C_{10} - C_{19}$) have been analysed by GC-MS for content of paraffins, naphthenes and different aromatic groups.

Introduction

The samples were received on February 10^{th} for analysis of the main hydrocarbon types by gas chromatography-mass spectrometry (GC-MS).

Experimental

About 40 mg of each sample was diluted in 2 ml of dichloromethane. The sample was then analysed with our SI-DIESEL method using a Finnigan GC-MS instrument. Instrumental conditions are enclosed in Appendix 1. Appendix 2 gives a more detailed description of the method.

Results and discussion

The results are given in Table 1. The GC-MS instrument was calibrated with sample "6506/12-9S, DST 2", which was made by mixing the C_{10} to C_{19} fractions. To test the long term reproducibility of the GC-MS system, the C_{14} fraction of the above mentioned sample was analysed and compared with previous analysis of the same sample. Since December 1995 a total of 12 parallels have been analysed with an average standard deviation of 3,9 relative % for the groups containing more than 0.1 weight-%. The results are given in Table 2.

Compound	C ₁₀	C _u	C ₁₂	C ₁₃	C ₁₄
Paraffins	40,4	40,8	37,7	37,5	37,9
Naphthenes	35,4	34,3	32,4	30,7	29,7
Alkylbenzenes	24,1	21,1	18,3	13,5	10,8
Indanes+Tetralines	0,10	2,89	8,65	12,9	13,5
Naphthalene	0,00	0,89	2,32	0,66	0,13
Alkylnaphthalenes	0,00	0,00	0,64	4,55	6,56
Acenaphthenes+Biphenyles	0,00	0,00	0,00	0,15	1,51
Fluorenes+Acenaphthylenes	0,00	0,00	0,00	0,00	0,00
Phenanthrenes	0,00	0,00	0,00	0,00	0,00
Dibenzothiophenes	0,00	0,00	0,00	0,00	0,00
Compound	C ₁₅	C ₁₆	C ₁₇	C ₁₈	C ₁₉
Paraffins	34,7	38,3	40,6	38,1	32,5
Naphthenes	31,0	30,2	28,9	31,0	32,9
Alkylbenzenes	9,49	8,62	7,28	4,92	2,05
Indanes+Tetralines	12,4	7,49	4,02	1,72	0,41
Naphthalene	0,00	0,00	0,00	0,00	0,00
Alkylnaphthalenes	8,75	7,57	6,09	4,61	2,72
Acenaphthenes+Biphenyles	3,42	6,70	10,6	14,38	16,1
Fluorenes+Acenaphthylenes	0,25	0,87	1,30	2,08	7,69
Phenanthrenes	0,00	0,06	0,40	1,00	1,73
Dibenzothiophenes	0,00	0,16	0,79	2,09	3,94

 Table 1.
 Composition in weight-% of sample "15/9-19A".

Table 2. Composition of	the C_{14} fract	ion of sample	: "6506/12-9	S" in weight
Compound	% s.d.	Average	Feb. 98	
Paraffins	2,6	36,3	35,2	
Naphthenes	4,5	30,6	31,1	
Alkylbenzenes	3,9	5,45	5,50	
Indanes+Tetralines	4,9	12,0	13,0	
Naphthalene	11,1	0,040	0,030	
Alkylnaphthalenes	3,3	12,8	12,3	
Acenaphthenes+Biphenyles	4,3	2,68	2,71	
Fluorenes+Acenaphthylenes		0,00	0	
Phenanthrenes		0,00	0	
Dibenzothiophenes		0,00	0	
Average (> 0.1 weight-%)	3,9			

%.

Yours sincerely SINTEF Applied Chemistry

Vena (YES

. Nina Gjøs Laboratory manager Environmental Technology and Analysis

1.

Hilde Drangsholt Hilde Drangsholt

Senior engineer

Enclosures:

- Instrumental conditions
- 2. Description of the SI-DIESEL method
- 3. Diskette with the report in Microsoft Word 6.0 format

Special requirements

Samples will be kept at SINTEF Applied Chemistry for 6 months after the completion of the project unless otherwise agreed upon. Analytical results were produced from samples in the condition in which they were received. SINTEF Applied Chemistry is neither responsible for the use of the results, nor for any consequences of such use. Sections of the report are not allowed to be copied without written permission from SINTEF Applied Chemistry.

Appendix 1. Instrumental conditions

Mass spectrometer: Gas chromatograph: Data system:	Finnigan MAT SSQ 700 Varian 3400 DecStation 5000/133
Temperatures	
Column:	30 °C (2 min) - 4 °C/min - 250 °C (15 min.)
Injector:	280 °C
Ion source	150 °C
Carrier Gas:	Не
Ionisation:	70 eV
Scan:	35-350, 0.5 sec. pr. scan
Column:	30 m DB-5 MS, 0.25 µm film, 0.25 mm i.d., 12 psi
Injection:	1 µl with a split flow of 50 ml/min

Appendix 2. Description of the SI-DIESEL method

The following compounds are analysed with the SI-DIESEL method:

:

The compounds are analysed by GC-MS using regular electron impact ionisation. The areas of the different compounds are determined by integrating the molecular ions within specified retention windows for each compound group. The areas are then multiplied by a correction factor to get the total area of the compound.

The aliphatic compounds are determined by integrating the most intense fragment ions. A matrix calculation is then used to correct for interferences between the aliphatic compounds. There may of course be interferences between different compounds that are not corrected by the software. This is however, minimised by use of specific retention windows for each compound group.

The sum of all groups is normalised to 100 weight-%.

A reference sample is used to measure the response of the different compounds.

Enclosure 4

Viscosity measurements performed by Statoil, F&U:

Method and instrumentation:

A Paar Physica USD (Universal Dynamic Specrometer) 200 reometer with Z1 DIN (double gap) sylinder is used for measurements. The heater/cooler is a LAUND RC6 CP with siliconoil (20 cSt) as medium. Programming of parameters was done by PC with the software US 200 v. 1,80 (Universal Software)